Face Swap using Face Feature Landmark

Here we will try to obtain all the neccessary features for face swap using Dlib's model shape_predictor_68_face_landmarks.

Here are our input images :

Let’s look at an code :

# Import neccessary libraries
import cv2
import dlib
import numpy
import sys


# Load shape_predictor_68_face_landmarks model
PREDICTOR_PATH = "shape_predictor_68_face_landmarks.dat"
# Set Scale factor and feather amount
SCALE_FACTOR = 1
FEATHER_AMOUNT = 11

# Define range of feature points according to their feature
FACE_POINTS = list(range(17, 68))
MOUTH_POINTS = list(range(48, 61))
RIGHT_BROW_POINTS = list(range(17, 22))
LEFT_BROW_POINTS = list(range(22, 27))
RIGHT_EYE_POINTS = list(range(36, 42))
LEFT_EYE_POINTS = list(range(42, 48))
NOSE_POINTS = list(range(27, 35))
JAW_POINTS = list(range(0, 17))

# Points used to line up the images.
ALIGN_POINTS = (LEFT_BROW_POINTS + RIGHT_EYE_POINTS + LEFT_EYE_POINTS + RIGHT_BROW_POINTS + NOSE_POINTS + MOUTH_POINTS)

# Points from the second image to overlay on the first. The convex hull of each element will be overlaid.
OVERLAY_POINTS = [ LEFT_EYE_POINTS + RIGHT_EYE_POINTS + LEFT_BROW_POINTS + RIGHT_BROW_POINTS, NOSE_POINTS + MOUTH_POINTS, ]

# Amount of blur to use during colour correction, as a fraction of the pupillary distance.
COLOUR_CORRECT_BLUR_FRAC = 0.6

# Create predictor and detector
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor( PREDICTOR_PATH)


# Raise Exception when there are too many faces ignore
class TooManyFaces(Exception):
    pass


# Raise Exception when there are no faces and ignore
class NoFaces(Exception):
    pass


# Obtain facial landmark from the image
def get_landmarks(im):
    rects = detector(im, 1)
    if len(rects) > 1:
        raise TooManyFaces
    if len(rects) == 0:
        raise NoFaces
    return numpy.matrix([[p.x, p.y] for p in predictor(im, rects[0]).parts()])


# This Function will return image with landmarks on the image
def annotate_landmarks(im, landmarks):
    im = im.copy()
    for idx, point in enumerate(landmarks):
        pos = (point[0, 0], point[0, 1])
        cv2.putText(im, str(idx), pos, fontFace = cv2.FONT_HERSHEY_SCRIPT_SIMPLEX, fontScale = 0.4, color=(0, 0, 255))
        cv2.circle(im, pos, 3, color=(0, 255, 255))
    return im


# This function will draw convex hull
def draw_convex_hull(im, points, color):
    points = cv2.convexHull(points)
    cv2.fillConvexPoly(im, points, color=color)


# Obain face mask of image using landmarks
def get_face_mask(im, landmarks):
    im = numpy.zeros(im.shape[:2], dtype=numpy.float64)
    for group in OVERLAY_POINTS:
        draw_convex_hull(im, landmarks[group],color=1)
    im = numpy.array([im, im, im]).transpose((1, 2, 0))
    im = (cv2.GaussianBlur(im, (FEATHER_AMOUNT, FEATHER_AMOUNT), 0) > 0) * 1.0
    im = cv2.GaussianBlur(im, (FEATHER_AMOUNT, FEATHER_AMOUNT), 0)
    return im


# Perform affine transformation and return it.
def transformation_from_points( points1, points2):
    """
    Return an affine transformation [s * R | T] such that:
    sum ||s*R*p1,i + T - p2,i||^2
    is minimized.
    """
    # Solve the procrustes problem by subtracting centroids, scaling by the standard deviation, and then using the SVD to calculate the rotation.
    # See the following for more details: https://en.wikipedia.org/wiki/Orthogonal_Procrustes_problem
    points1 = points1.astype(numpy.float64)
    points2 = points2.astype(numpy.float64)
    c1 = numpy.mean(points1, axis=0)
    c2 = numpy.mean(points2, axis=0)
    points1 -= c1
    points2 -= c2
    s1 = numpy.std(points1)
    s2 = numpy.std(points2)
    points1 /= s1
    points2 /= s2
    U, S, Vt = numpy.linalg.svd(points1.T * points2)
    # The R we seek is in fact the transpose of the one given by U * Vt. This is because the above formulation assumes the matrix goes on the right (with row vectors) where as our solution requires the matrix to be on the left (with column vectors).
    R = (U * Vt).T
    return numpy.vstack([ numpy.hstack(((s2 / s1) * R, c2.T - (s2 / s1) * R * c1.T)), numpy.matrix([0., 0., 1.])])


# This function read image and obtain landmark by giving filename as parameter
def read_im_and_landmarks(fname):
    im = cv2.imread(fname, cv2.IMREAD_COLOR)
    im = cv2.resize(im, (im.shape[1] * SCALE_FACTOR, im.shape[0] * SCALE_FACTOR))
    s = get_landmarks(im)
    return im, s


# Wrap feature of im with M
def warp_im(im, M, dshape):
    output_im = numpy.zeros(dshape, dtype=im.dtype)
    cv2.warpAffine(im, M[:2], (dshape[1], dshape[0]), dst=output_im, borderMode= cv2.BORDER_TRANSPARENT, flags= cv2.WARP_INVERSE_MAP)
    return output_im


# Adjuct color properly so image will look more real
def correct_colours(im1, im2, landmarks1):
    blur_amount = COLOUR_CORRECT_BLUR_FRAC * numpy.linalg.norm( numpy.mean( landmarks1[ LEFT_EYE_POINTS], axis=0) - numpy.mean(landmarks1[ RIGHT_EYE_POINTS], axis=0))
    blur_amount = int(blur_amount)
    if blur_amount % 2 == 0:
        blur_amount += 1
    im1_blur = cv2.GaussianBlur(im1, (blur_amount, blur_amount), 0)
    im2_blur = cv2.GaussianBlur(im2, (blur_amount, blur_amount), 0)
    # Avoid divide-by-zero errors.
    im2_blur += (128 * (im2_blur <= 1.0)).astype(im2_blur.dtype)
    return (im2.astype(numpy.float64) * im1_blur.astype(numpy.float64) / im2_blur.astype(numpy.float64))


# Enter Filename of 2 pictures.
pic2 = "hillary.jpg"
pic1 = "trump.jpg"

# Obtain landmarks along with image.
im1, landmarks1 = read_im_and_landmarks(pic1)
im2, landmarks2 = read_im_and_landmarks(pic2)

# Normalize points
M = transformation_from_points( landmarks1[ALIGN_POINTS], landmarks2[ALIGN_POINTS])

# Creak mask and wrap features
mask = get_face_mask(im2, landmarks2)
warped_mask = warp_im(mask, M, im1.shape)
combined_mask = numpy.max([get_face_mask(im1, landmarks1), warped_mask],axis=0)

# Apply masking to target image
warped_im2 = warp_im(im2, M, im1.shape)
warped_corrected_im2 = correct_colours(im1, warped_im2, landmarks1)

# Normalize output image
output_im = im1 * (1.0 - combined_mask) + warped_corrected_im2 * combined_mask

# Store and write faceswapped image
cv2.imwrite('faceswap.jpg', output_im)


Our Output image will look like this:

Note : Copyright (c) 2015 Matthew Earl Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE