Face Recognition

A facial recognition system is a technology capable of identifying or verifying a person from a digital image or a video frame from a video source. There are multiple methods in which facial recognition systems work, but in general, they work by comparing selected facial features from given image with faces within a database.

Here we will follow the following steps:

  1. Create a dataset of one person's face, say 100 samples.
  2. Use somple suitable Machine learning algorithms to train model.
  3. Use trained model for recognition face.

Let’s look at an code :


Create Training Data

# Import the modules
import cv2
import numpy as np

# Load HAAR face classifier
face_classifier = cv2.CascadeClassifier( 'haarcascade_frontalface_default.xml')

# Function to extract face from frame
def face_extractor(img):
    # Function detects faces and returns the cropped face
    # If no face detected, it returns the input image
    gray = cv2.cvtColor( img, cv2.COLOR_BGR2GRAY)
    faces = face_classifier.detectMultiScale( gray, 1.3, 5)
    if faces is ():
        return None

    # Crop all faces found
    for (x,y,w,h) in faces:
        cropped_face = img[y:y+h, x:x+w]

    return cropped_face


# Initialize Webcam
cap = cv2.VideoCapture(0)
count = 0
# Collect 100 samples of your face from webcam input
while True:
    ret, frame = cap.read()
    # If face is found in frame
    if face_extractor(frame) is not None:
        count += 1
        face = cv2.resize(face_extractor(frame), (200, 200))
        face = cv2.cvtColor(face, cv2.COLOR_BGR2GRAY)
        # Save file in specified directory with unique name
        file_name_path = 'face/' + str(count) + '.jpg'
        cv2.imwrite(file_name_path, face)
        # Put count on images and display live count
        cv2.putText(face, str(count), (50, 50), cv2.FONT_HERSHEY_COMPLEX, 1, (0,255,0), 2)
        cv2.imshow('Face Cropper', face)
    else:
        print("Face not found")
        pass
    if cv2.waitKey(1) == 13 or count == 100: #13 is the Enter Key
        break

# After collecting samples, Release and destroyAllWindows
cap.release()
cv2.destroyAllWindows()
print("Collecting Samples Complete")


Train Model

# Import the modules
import cv2
import numpy as np
from os import listdir
import pickle
from os.path import isfile, join

# Get the training data we previously made
data_path = 'face/'
onlyfiles = [f for f in listdir(data_path) if isfile(join(data_path, f))]

# Create arrays for training data and labels
Training_Data, Labels = [], []

# Open training images in our datapath
# Create a numpy array for training data
for i, files in enumerate(onlyfiles):
    image_path = data_path + onlyfiles[i]
    images = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
    Training_Data.append( np.asarray( images, dtype=np.uint8))
    Labels.append(i)

# Create a numpy array for both training data and labels
Labels = np.asarray(Labels, dtype=np.int32)

# Initialize facial recognizer
model = cv2.face.LBPHFaceRecognizer_create()
# NOTE: For OpenCV 3.0 use cv2.face.createLBPHFaceRecognizer()

Training_Data), np.asarray(Labels))
print("Model trained sucessefully")

# Let's train our model
model.train(np.asarray( Training_Data), np.asarray(Labels))
print("Model trained sucessefully")


Run Our Facial Recognition

# Import the modules
import cv2
import numpy as np
import time

# Load HAAR face classifier
face_classifier = cv2.CascadeClassifier( 'haarcascade_frontalface_default.xml')

# Function to detect face
def face_detector(img, size=0.5):
    # Convert image to grayscale
    gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    faces = face_classifier.detectMultiScale( gray, 1.3, 5)
    # If face not found return blank region
    if faces is ():
        return img, []
    # Obtain Region of face
    for (x,y,w,h) in faces:
        cv2.rectangle(img, (x,y), (x+w,y+h), (0,255,255),2)
        roi = img[y:y+h, x:x+w]
        roi = cv2.resize(roi, (200, 200))
    return img, roi


# Open Webcam
cap = cv2.VideoCapture(0)
while True:
    ret, frame = cap.read()
    image, face = face_detector(frame)
    try:
        face = cv2.cvtColor(face, cv2.COLOR_BGR2GRAY)
        # Pass face to prediction model
        # "results" comprises of a tuple containing the label and the confidence value
        results = model.predict(face)
        # Tell about the confidence of user.
        if results[1] < 500:
            confidence = int( 100 * (1 - (results[1])/400) )
            display_string = str(confidence) + '% Confident it is User'
        cv2.putText(image, display_string, (100, 120), cv2.FONT_HERSHEY_COMPLEX, 1, (255,120,150), 2)
        # If confidence is greater than 90 then the face will be recognized.
        if confidence > 90:
            cv2.putText(image, "Unlocked", (250, 450), cv2.FONT_HERSHEY_COMPLEX, 1, (0,255,0), 2)
            cv2.imshow('Face Recognition', image )
        # If confidence is less than 90 then the face will not be recognized.
        else:
            cv2.putText(image, "Locked", (250, 450), cv2.FONT_HERSHEY_COMPLEX, 1, (0,0,255), 2)
            cv2.imshow('Face Recognition', image )
    # Raise exception in case, no image is found
    except:
        cv2.putText(image, "No Face Found", (220, 120) , cv2.FONT_HERSHEY_COMPLEX, 1, (0,0,255), 2)
        cv2.putText(image, "Locked", (250, 450), cv2.FONT_HERSHEY_COMPLEX, 1, (0,0,255), 2)
        cv2.imshow('Face Recognition', image )
        pass
    # Breaks loop when enter is pressed
    if cv2.waitKey(1) == 13: #13 is the Enter Key
        break

# Release and destroyAllWindows
cap.release()
cv2.destroyAllWindows()

Note : Train Model and Run Our Facial Recognition should be written on same file


Our Output image will look like this: